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1 Introduction

Two-dimensional gravity has been extensively explored in the past 30 years, both as the

worldsheet description of string theories and as a toy model for higher dimensional quantum

gravity (for a review see [1] and references therein). Quantum gravity in AdS2, which is

expected to be related to extremal black holes, remains mysterious [2–7]. In this paper,

we shall take the viewpoint that “pure” quantum gravity in AdS2 is described by Liouville

gravity, with Zamolodchikov-Zamolodchikov (ZZ) boundary conditions [8].1 The states of

quantum gravity in global AdS2 will be the boundary primaries of ZZ. This proposal will

be validated by finding the semi-classical interpretation of these states and their correlation

functions. We will see that in the semi-classical limit, the ZZ boundary primaries describe

“fragmented” AdS2’s, i.e. several global AdS2’s “attached” along their boundaries. The

correlation functions of the ZZ boundary primaries will be dominated by the contribution

from classical instantons, which are several Poincaré discs suitably “glued” together along

parts of their boundaries.

We analyze the quantum corrections to the two-fragmented AdS2 using the exact bulk-

boundary three point functions on the disc. The radius of the AdS2 solution is large in the

semi-classical (weak coupling) limit of Liouville gravity. In this limit, the Liouville theory

has either large positive central charge cL (with real background chargeQ), or large negative

1For reviews of Liouville theory see for example [10, 11].
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cL (with imaginaryQ). In the cL > 0 case, we find that quantum corrections erase one of the

two AdS2’s. In the cL < 0 case, the two-fragmented AdS2 survive in the quantum theory.

From the point of view of AdS2/CFT1 correspondence, our results suggest that the

“CFT1” dual to pure Liouville gravity in AdS2 comprises a single copy of Virasoro alegbra

and a finite set of primary states – those of Liouville theory on a strip with ZZ boundary

conditions. The correlation functions of these primaries can in principle be computed

exactly using bootstrap methods, which then completely characterizes the theory.

The paper is organized as follows. In section 2 we first review the ZZ boundary

conditions and boundary primaries. We will then probe the “geometry” of the semi-

classical limit of the ZZ boundary primary using a bulk primary operator, and show that

the boundary primaries can be identified as fragmented AdS2’s. In section 3 we study

the three-point functions of the boundary primaries. Once again using the bulk primary

probe, we will find that in the semi-classical limit the bulk-boundary four-point function

is dominated by an instanton solution interpolating fragmented AdS2’s.

2 ZZ boundary primaries as fragmented AdS2

2.1 ZZ boundary conditions and boundary primaries in Liouville theory

We work in the convention of [8], and write the Liouville Lagrangian density (in a flat

background metric) as

L =
1

4π
(∂aφ)2 + µe2bφ. (2.1)

The background charge is Q = b+1/b, and the central charge of the Liouville CFT is given

by c = 1 + 6Q2. Depending on whether b is real or purely imaginary, the central charge

c is greater or less than 1. If b is imaginary, we may retain a real Lagrangian density by

Wick rotating φ→ iφ̃, and φ̃ will have a wrong sign kinetic term. The Liouville field φ can

be thought of as the conformal mode of gravity in two dimensions, with metric

ds2 = e2bφδabdσ
adσb. (2.2)

The Liouville action is generated when a two-dimensional “matter” conformal field theory

of nonzero central charge −c is coupled to gravity [12]. For the purpose of this paper, we

can ignore the matter CFT, although we shall keep in mind that the full theory of quantum

gravity should have total central charge zero.

The ZZ boundary condition is such that the expectation value of e2bφ goes to +∞
at the boundary. Such consistent quantum boundary conditions are labeled by a pair of

positive integers (m,n). There is a symmetry which exchanges m with n while sending

b→ 1/b. Global AdS2 can be described as a classical solution of Liouville theory on a strip

σ ∈ (0, π), τ ∈ R, with e2bφ → +∞ on the two boundaries. In the quantum theory, we can

choose independently (m,n) boundary condition on the left side of the strip, and (m′, n′)

on the right side of the strip. The Hilbert space of states on the strip will be denoted by

H(m,n;m′,n′). It consists of boundary primary states ψk,l and their Virasoro descendants.

The boundary primary ψk,l is characterized by its conformal dimension

∆k,l =
Q2

4
− (kb+ l/b)2

4
, (2.3)

– 2 –
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and is subject to the selection rule

k = |m−m′| + 1, |m−m′| + 3, · · · ,m+m′ − 1;

l = |n− n′| + 1, |n− n′| + 3, · · · , n+ n′ − 1. (2.4)

The bulk one-point function 〈Vα(z, z̄)〉 on the disc with boundary condition (m,n), as well

as the bulk-boundary two-point function (for special boundary operators), have been solved

in [8]. We will need more: the bulk-boundary three-point function, boundary three-point

function, and the bulk-to-boundary four-point function. These will be solved in the next

few subsections by conformal bootstrap method.

2.2 Fragmented AdS2 as classical solutions

It is well known that the Liouville equation of motion on the strip (for simplicity we set

henceforth µ = 1 in the action (2.1))

(∂2
σ − ∂2

t )φ = 4πbe2bφ (2.5)

admits the basic static solution

φ = − 1

2b
ln(4πb2 sin2 σ) . (2.6)

Of course, the corresponding physical metric ds2 = e2bφ(−dt2 + dσ2) is nothing but the

AdS2 space-time. This is the SL(2,R) invariant vacuum of Liouville theory first pointed

out in [13, 14] (see also [2]).

It is easy to see that the AdS2 solution is part of a more general family of static solutions

φ = − 1

2b
ln

(

4πb2
sin2(lσ)

l2

)

(2.7)

parameterized by an integer l ≥ 1. These solutions behave like AdS2 at the σ = 0, π

boundaries, but the metric also blows up in the “interior” at σ = p
l π , p = 1, · · · , l − 1.

In other words, the corresponding space-time looks like l disconnected copies of the AdS2

solution. An example with l = 2 is plotted in figure 1. We will refer to these solutions as

“fragmented AdS2 spaces”.

A first hint to the relation between fragmented AdS2’s and ZZ boundary primaries

comes from looking at the classical Liouville stress tensor evaluated on the solutions (2.7).

The T00 component of the stress tensor for a static solution reads

T00 =
1

4π
(∂σφ)2 + e2bφ − 1

2πb
∂2

σφ , (2.8)

where the last term comes from the “linear dilaton” coupling to the 2d scalar curvature.

Evaluated on (2.7), this just gives the constant T00 = − l2

4πb2
. Then one would obtain an

energy relative to the AdS2 vacuum

E = − l
2 − 1

4b2
. (2.9)

Note that this result precisely matches the classical limit b→ 0 of the conformal dimension

∆k,l of the ZZ boundary primaries, eq. (2.3) (k drops out of the classical limit, as long as

it is much smaller than 1
b2

).

– 3 –
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2.3 The classical limit of bulk-boundary three point functions

A given ZZ boundary primary |ψ〉 should correspond to a deformation of the Liouville

profile (i.e. the space-time metric) in the bulk. Specifically, we would like to argue that

the relevant bulk metrics in the classical limit b→ 0 correspond to the “fragmented” AdS2

spaces (2.7). To test this idea, we shall study the expectation value 〈φ〉 of the Liouville

field on the strip, in a boundary primary state |ψ〉. This can be done by using as a “probe”

the bulk primary operator Vα = e2αφ. More precisely, we need to compute the disc bulk-

boundary three point function

〈ψ(y1)ψ(y2)Vα(z, z̄)〉 = |z − z̄|−2∆α(y1 − y2)
−2hF(η) (2.10)

where ∆α = α(Q−α) is the dimension of Vα, h is the dimension of ψ, and η is the SL(2,R)

invariant cross ratio

η =
(z − z̄)(y1 − y2)

(z − y2)(y1 − z̄)
= 1 − e2iσ , (2.11)

where σ is the spatial coordinate on the strip (to obtain this relation, one can use SL(2,R)

to set y1 = 0 , y2 = ∞). The three point function (2.10) is interpreted as the expectation

value 〈ψ|Vα(σ)|ψ〉 in the ZZ boundary primary |ψ〉. When ψ is the identity operator, this

is just the bulk one-point function computed by ZZ [8]

〈Vα(z, z̄)〉 =
U(α)

|z − z̄|2∆α
. (2.12)

Transforming back to strip coordinates z = eiσ+τ , one can see that in fact this is just the

AdS2 metric (2.6).

The correlation function (2.10) depends of course on the explicit choice of (m,n) bound-

ary conditions. For now we keep the analysis general and do not specify the type of bound-

ary conditions. Let us consider the simplest nontrivial example, ψ = ψ1,2. According

to (2.3), it has conformal dimension

h1,2 = −1

2
− 3

4b2
. (2.13)

All ZZ boundary primaries are degenerate, i.e. their conformal families contains null states.

In particular, the conformal family of ψ1,2 has a null state at level two, namely (L2
−1 +

b−2L−2)|ψ1,2〉 = 0. It follows that the bulk-boundary three point function satisfies the

differential equation

{

∂2
y1

+ b−2

[

h1,2

(y2 − y1)2
+

∆α

(z − y1)2
+

∆α

(z̄ − y1)2

− ∂y2

y2 − y1
− ∂z

z − y1
− ∂z̄

z̄ − y1

]}

〈ψ1,2(y1)ψ1,2(y2)Vα(z)〉 = 0 . (2.14)

In terms of F(η), the equation is

η(η − 1)F ′′(η) +
[

(2 + b−2)η − 2(1 + b−2)
]

F ′(η) + b−2∆α
η

η − 1
F(η) = 0 . (2.15)

– 4 –
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e2bφ

0  π/2 π

σ

Figure 1. The “two-fragmented” AdS2 space.

In the next subsection we will explicitly solve this equation at finite b and discuss

in detail the results. Here we first present an easy way to arrive at the classical limit of

the bulk-boundary three point function, hence the classical interpretation of the boundary

primary ψk,l. The idea is that the equation (2.15) has a naive classical limit (b→ 0),

(η − 2)F ′
cl(η) + ∆α

η

η − 1
Fcl(η) = 0 . (2.16)

The solution is readily obtained

Fcl(η = 1 − e2iσ) = (cos σ)−2∆α , (2.17)

where ∆α ≃ α/b. Combining with the prefactor |z − z̄|2∆α and transforming to the strip,

one obtains as expected the two-fragmented AdS2 (see figure 1), i.e. 〈ψ1,2|Vα(σ)|ψ1,2〉 ∼
(sin 2σ)−2α/b. Note also that since the differential equation reduces to first order, the choice

of boundary condition will not matter in this limit.

Let us now examine the bulk-boundary three point function involving ψ1,3

〈ψ1,3(y1)ψ1,3(y2)Vα(z)〉 = |z − z̄|−2∆α(y1 − y2)
−2h1,3F1,3(η) (2.18)

with h1,3 = −1 − 2b−2. The conformal family of ψ1,3 has a null state at level 3,
(

L3
−1 + 4b−2L−2L−1 + (2b−2 + 4b−4)L−3

)

|ψ1,3〉 = 0 (2.19)

The differential equation on the disc three point function is
{

∂3
y1

+ 4b−2

[

h1,3

(y2 − y1)2
+

∆α

(z − y1)2
+

∆α

(z̄ − y1)2
− ∂y2

y2 − y1
− ∂z

z − y1
− ∂z̄

z̄ − y1

]

∂y1

+(2b−2 + 4b−4)

[

2h1,3

(y2 − y1)3
+

2∆α

(z − y1)3
+

2∆α

(z̄ − y1)3
− ∂y2

(y2 − y1)2
− ∂z

(z − y1)2

− ∂z̄

(z̄ − y1)2

]}

〈ψ1,3(y1)ψ1,3(y2)Vα(z)〉 = 0 .

(2.20)

– 5 –
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In the b→ 0 limit (with ∆α held fixed), the equation reduces to

(η − 1)(η2 − 3η + 3)Fcl
1,3

′
(η) + 2∆αη(η − 2)Fcl

1,3(η) = 0 . (2.21)

The solution is

Fcl
1,3(η = 1 − e2iσ) = (1 + 2 cos(2σ))−2∆α . (2.22)

which precisely gives rise to the 3-fragmented AdS2 after the z-dependent prefactor is

included. In fact, we observe more generally that the conformal family of ψ1,l has a null

state at level l, of the form (see page 245 of [16])

det

[

−J− +
l−1
∑

m=0

b−2mJm
+ L−m−1

]

|ψ1,l〉 = 0, (2.23)

where the determinant is taken over an l × l matrix, with J± defined by

J− =















0 0 · · · 0 0

1 0 · · · 0 0

0 1 · · · 0 0

· · ·
0 0 · · · 1 0















l×l

, J+ =



















0 l − 1 0 0 · · · 0 0

0 0 2(l − 2) 0 · · · 0 0

0 0 0 3(l − 3) · · · 0 0

· · ·
0 0 0 0 · · · 0 l − 1

0 0 0 0 · · · 0 0



















l×l

, (2.24)

In particular, the classical limit of the null state equation for ψ1,l is given by L−l|ψ1,l〉 =

O(b2). Writing

〈ψ1,l(y1)ψ1,l(y2)Vα(z)〉 = |z − z̄|−2∆α(y1 − y2)
−2h1,lF1,l(η) (2.25)

Analogously to (2.21), the classical constraining equation can be obtained as the first order

differential equation

η(η − 1)Fcl
1,l

′
(η) + ∆α

[

2 − η + lη
(1 − η)l + 1

(1 − η)l − 1

]

Fcl
1,l(η) = 0 . (2.26)

The solution is

Fcl
1,l(η = 1 − e2iσ) =

(

sin lσ

sinσ

)−2∆α

(2.27)

Consequently,

〈ψ1,l|e2αφ(σ)|ψ1,l〉 ∼ (sin lσ)−2α/b, (2.28)

corresponding to the l-fragmented AdS2, in accordance with our general proposal.

2.4 Quantum bulk-boundary three-point functions

2.4.1 General boundary condition

We shall now study the quantum bulk-boundary three point function (2.10) at finite cou-

pling. We will specialize to the simplest non-trivial example ψ = ψ1,2 (in section 2.5 we will

propose a method to obtain the bulk-boundary three point function for general ψk,l). To

– 6 –
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this purpose, we need to solve the second order differential equation (2.15) exactly at finite

b. The equation can be put in the standard hypergeometric form, and the general solution is

F(η) = c1(1 − η)α/b
2F1

(

2α

b
, 1 + b−2; 2 + 2b−2; η

)

+c2(1 − η)α/bη−1−2b−2

2F1

(

−1 − 2b−2 +
2α

b
,−b−2;−2b−2; η

)

, (2.29)

where 2F1(A,B;C; z) is the Gauss hypergeometric function. The constants c1 and c2 are

related to the factorization of the disc three point function along the boundary operator

channels corresponding to the boundary primaries 1 (the identity operator) and ψ1,3 (if it is

allowed by the specific choice of boundary condition, according to the selection rules (2.4)).

In particular,

c1 = U(α),

c2 = 〈ψ1,2ψ1,2ψ1,3〉R1,3(α), (2.30)

where U(α) is the coefficient of the disc one point function of Vα, and R1,3(α) is the coeffi-

cient of the bulk-to-boundary two point function of Vα with ψ1,3. By 〈ψ1,2ψ1,2ψ1,3〉 we mean

the coefficient of the corresponding boundary three point function, with the appropriate

boundary conditions along the three segments of the boundary of the disc in between the op-

erator insertions. Note that ψ1,3 has conformal dimension h1,3 = −1−2b2, R1,3(0) = 0, and

that both R1,3(α) and 〈ψ1,2ψ1,2ψ1,3〉 depend on the boundary conditions. The explicit ex-

pressions for U(α) andR1,3(α)R1,3(−b/2) were derived by ZZ [8]. The boundary three point

function 〈ψ1,2ψ1,2ψ1,3〉, however, was not previously derived and will be obtained below.

Let us consider the classical/weak coupling limit of (2.29), i.e. small b. The asymptotics

of the Gauss hypergeometric functions can be extracted using the quadratic transformation

2F1(A,B; 2B; z) = (1 − z)−A/2
2F1

(

A

2
, B − A

2
;B +

1

2
;

z2

4(z − 1)

)

(2.31)

and the asymptotic expansion [15]

2F1(A,B + λ;C + λ; z) = (1 − z)−A(1 + O(λ−1)), λ→ ∞. (2.32)

We then find in the small b limit

F(η) ∼ U(α)

(

1 − η2

4(η − 1)

)

−α/b

+〈ψ1,2ψ1,2ψ1,3〉R1,3(α)(1− η)
1

2
+b−2

η−1−2b−2

(

1 − η2

4(η − 1)

)α/b− 1

2

= U(α)(cos σ)−2α/b + 〈ψ1,2ψ1,2ψ1,3〉R1,3(α)(−2i sinσ)−1−2b−2

(cosσ)2α/b−1 . (2.33)

In particular, in the α→ 0 limit, F(η) → 1 as expected. After a conformal transformation

back to the strip, we conclude that

〈ψ1,2|e2αφ(σ)|ψ1,2〉 ∼ U(α)(sin 2σ)−2α/b (2.34)

+〈ψ1,2ψ1,2ψ1,3〉R1,3(α)(−i)−1−2b−2
(2 sin σ)−1−2b−2−2α/b(cos σ)2α/b−1

– 7 –
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Vαψ
1,2 ψ

1,2

(1,1)

(1,2)

Figure 2. Depiction of the bulk-boundary three point function 〈ψ1,2(y1)ψ1,2(y2)Vα(z)〉 with a

specific choice of boundary condition.

as b → 0 with α/b fixed. This can be compared to the vacuum expectation value of Vα,

which as discussed in the previous section corresponds to the regular AdS2 profile

〈1|e2αφ(σ)|1〉 ∼ U(α)(2 sin σ)−2α/b . (2.35)

If the second term in (2.34) is absent, i.e. ignoring the contribution from the ψ1,3 channel,

then the contribution from the identity operator channel suggests indeed that the bound-

ary primary ψ1,2 creates a state that would correspond classically to two copies of global

AdS2 glued together, as predicted by the “naive” classical limit of the differential equation

discussed in the previous section. The ψ1,3 contribution is sensitive to the boundary con-

ditions, and will be analyzed in the next subsection for a specific choice of boundary type.

2.4.2 (1, 1; 1, 2) boundary condition

Let us now specialize to the strip with (1, 1) boundary condition on the left and (1, 2)

boundary condition on the right. The only allowed boundary primary operator/state is

ψ1,2. To compute the expectation value of the Liouville field in this state, we need to com-

pute the bulk-boundary three point function 〈ψ1,2(y1)ψ1,2(y2)Vα(z)〉, with (1, 1) boundary

condition on one segment of the boundary circle and (1, 2) boundary on the other segment

of the circle, between y1 and y2, as shown in figure 2. There are two different ways to

factorize 〈ψ1,2(y1)ψ1,2(y2)Vα(z)〉 into the product of a boundary three point function and a

bulk-boundary two point function, along channels of (1, 1; 1, 1) boundary type or (1, 2; 1, 2)

boundary type. In the first factorization, as shown in figure 3, the only boundary primary

operator in the channel is the identity operator. We have then

〈ψ(y1)ψ(y2)Vα(z)〉= |z− z̄|−2∆α(y1−y2)
−2hU1,1(α)(1−η)α/b

2F1

(

2α

b
, 1+b−2; 2+2b−2; η

)

.

(2.36)

In the second factorization, we have the identity operator as well as ψ1,3 propagating

– 8 –
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Vα

(1,1)

ψ
1,2

ψ
1,2

(1,1)

(1,1)

(1,2)

1

Figure 3. Factorization of the bulk-boundary three point function along the (1, 1; 1, 1) channel.

Vα

(1,2)

ψ
1,2

ψ
1,2

(1,2)

(1,2)

(1,1)

1 , ψ
1,3

Figure 4. Factorization of the bulk-boundary three point function along the (1, 2; 1, 2) channel.

through the channel, as depicted in figure 3, giving

〈ψ(y1)ψ(y2)Vα(z)〉 = |z−z̄|−2∆α(y1−y2)
−2h

[

U1,2(α)(1−η̄)α/b
2F1

(

2α

b
, 1+b−2; 2+2b−2; η̄

)

−ie−iπ/b2〈ψ1,2ψ1,2ψ1,3〉R1,3(α)(1 − η̄)α/bη̄−1−2b−2

×2F1

(

−1 − 2b−2 +
2α

b
,−b−2;−2b−2; η̄

)]

, (2.37)

where η̄ is the complex conjugate of η. One may also replace η̄ by η/(η − 1), and use
the property of Gauss hypergeometric functions to rewrite (2.37) in terms of the same

functions with argument η. The phase factor −ie−iπ/b2 in the second term on the r.h.s. is
such that in the factorization limit η → iǫ (σ → π− ǫ), the conformal block corresponding
to the ψ1,3 is real and positive. One may seem to run into a puzzle here, since the two
ways of factorizing the bulk-boundary three point function should give the same result.
The resolution is that in fact (2.36) and (2.37) are related by analytic continuation across
the branch cut of the hypergeometric function from η = 1 to infinity. This can be shown
using the monodromy of the hypergeometric function around η = 1, or equivalently

2F1(a, b; c;x+ iǫ) = e2πi(a+b−c)
2F1(a, b; c;x) (2.38)

+2πieπi(a+b−c) Γ(c)

Γ(a+ b+ 1 − c)Γ(c− a)Γ(c− b)
2F1(a, b; a+ b+ 1 − c; 1 − x)

for real x > 1, together with the boundary three point function 〈ψ1,2ψ1,2ψ1,3〉 which will

be explicitly computed below.

To compute 〈ψ1,2ψ1,2ψ1,3〉, we make use of the boundary four point function

〈ψ1,2(y1)ψ1,2(y2)ψ1,2(y3)ψ1,2(y4)〉, with alternating (1, 1) and (1, 2) boundary conditions

– 9 –
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Figure 5. Boundary four point function with alternating boundary conditions.
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ψ
1,2

ψ
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1

(1,1)

(1,1) (1,1)

(1,2)

ψ
1,2

ψ
1,2

(1,2)

(1,2)

ψ
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1,2

1 , ψ
1,3
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(1,2)

(1,2)

(1,2)

(1,1)

ψ
1,2

ψ
1,2

(1,1)

Figure 6. The two possible factorizations of the boundary four point function.

along the four segments of the boundary circle separated by the boundary operators, see

figure 5. It is determined by a function G(ζ),

〈ψ1,2(y1)ψ1,2(y2)ψ1,2(y3)ψ1,2(y4)〉 = (y1 − y2)
−2h1,2(y3 − y4)

−2h1,2G(ζ),

ζ =
(y1 − y2)(y3 − y4)

(y3 − y2)(y1 − y4)
. (2.39)

G(ζ) satisfies the same differential equation as that of F(η), with ∆α replaced by h (α →
− 1

2b ), η replaced by ζ. The solutions takes the form

G(ζ) = c1(1 − ζ)−
1
2
b−2

2F1(−b−2, 1 + b−2; 2 + 2b−2; ζ)

+c2(1 − ζ)−
1
2
b−2
ζ−1−2b−2

2F1(−1 − 3b−2,−b−2;−2b−2; ζ) . (2.40)

Again, we can factorize it into two boundary three point functions, along either (1, 1; 1, 1)

channel (with the only primary being the identity operator) or (1, 2; 1, 2) channel (with

primaries 1 and ψ1,3). The two factorizations are shown in figure 6. The first factoriza-
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tion gives

〈ψ1,2(y1)ψ1,2(y2)ψ1,2(y3)ψ1,2(y4)〉 = (y1 − y2)
−2h1,2(y3 − y4)

−2h1,2 (2.41)

×(1 − ζ)−
1
2
b−2

2F1(−b−2, 1 + b−2; 2 + 2b−2; ζ) ,

while the second factorization gives

〈ψ1,2(y1)ψ1,2(y2)ψ1,2(y3)ψ1,2(y4)〉 =

C(b)(y1 − y2)
−2h1,2(y3 − y4)

−2h1,2

(

1 − ζ

ζ

)−2h1,2

×
[

ζ−
1
2
b−2

2F1(−b−2, 1 + b−2; 2 + 2b−2; 1 − ζ)

+〈ψ1,2ψ1,2ψ1,3〉2 ζ−
1
2
b−2

(1 − ζ)−1−2b−2

2F1(−1 − 3b−2,−b−2;−2b−2; 1 − ζ)
]

(2.42)

where C(b) = −(2 cos(πb−2))−1 is a normalization factor (which can be determined by

matching the two channels as explained below). This nontrivial normalization factor is due

to the different boundary conditions on the channels of the two factorizations. In fact, we

can identify

C(b) =
C1,1(b)

C1,2(b)
(2.43)

where Cm,n(b) stands for the disc amplitude with no insertions and (m,n) boundary con-
dition. The forms of (2.41) and (2.42) agree by the identity

2F1(A,B;C; z) =
Γ(C)Γ(C −A−B)

Γ(C −A)Γ(C −B)
2F1(A,B;A+B + 1 − C; 1 − z)

+
Γ(C)Γ(A+B − C)

Γ(A)Γ(B)
(1 − z)C−A−B

2F1(C −A,C −B; 1 + C −A−B; 1 − z)

= (1 − z)C−A−B
2F1(C −A,C −B;C; z). (2.44)

Using this, we then derive the boundary three point function

〈ψ1,2ψ1,2ψ1,3〉 = ±
[

−2 cos(
π

b2
)
Γ(1 + 2

b2
)Γ(2 + 2

b2
)

Γ(1 + 1
b2 )Γ(2 + 3

b2 )

]
1
2

. (2.45)

In order to match (2.36) and (2.37) through analytic continuation, as explained above, we
need to choose the negative sign in (2.45). Using the results of [8], it follows that

〈ψ1,2ψ1,2ψ1,3〉R1,3(α)

U1,1(α)
=− 8

π

(

1+
2

b2

)

sin
(

2π
α

b

)

sin

(

2π
α− b−1

b

)

Γ( 2
b2 )2Γ(1− 2α

b )Γ(−1− 2
b2 + 2α

b )

Γ
(

1
b2

)2 .

(2.46)

It is also useful to note the identity

U1,2(α)

U1,1(α)
=

cos(π(2α
b − 1

b2
))

cos(π/b2)
. (2.47)

Using (2.46) and (2.47), remarkably, one can check that (2.37) is indeed related to (2.36)

by analytic continuation to a different sheet across its branch cut. This also provides a

check of the result of [8] for Um,n(α) and R1,3(α).
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Figure 7. Plots of the bulk-boundary 3-point function 〈ψ1,2|Vα(σ)|ψ1,2〉 (with α = b) at finite

coupling, for b real (left) and b imaginary (right), with |b| = 0.3. The dashed line represents the

AdS2 metric, while the dotted one corresponds to the two-fragmented AdS2. With real b (left) the

asymptotic AdS2 boundary condition is respected only at the σ = 0 boundary, and the classical

limit b→ 0 produces a single AdS2 fragment (the solid line extends to σ = π and erases the second

AdS2). On the other hand, with imaginary b (right) the profile is asymptotically AdS2 at both

boundaries and the limit b→ 0 gives the two-fragmented AdS2 metric.

The quantum bulk-boundary three-point function can therefore be determined by an-
alytically continuing (2.36) from σ = 0 to σ = π. In practice, such analytic continuation
may be defined by “patching” (2.36) to (2.37) at σ = π/2, while using the standard def-
inition of the hypergeometric functions with their conventional branch cuts. On the two
halves of the strip, we find in the b→ 0 limit, with α/b finite,

〈ψ1,2|e2αφ(σ)|ψ1,2〉 ∼ U1,1(α)(sin 2σ)−2α/b, σ ∈
(

0,
π

2

)

, (2.48)

〈ψ1,2|e2αφ(σ)|ψ1,2〉 ∼ U1,2(α) (sin 2σ)−2α/b

+〈ψ1,2ψ1,2ψ1,3〉R1,3(α)(2 sin σ)−1−2b−2
−2α/b(cosσ)2α/b−1, σ ∈

(π

2
, π
)

.

We see that for real b and generic values of α, in the classical limit the ψ1,3 channel

dominates for σ > π/2, and appears to “erase” the right AdS2. The exceptional cases

are when the probe bulk operator has α = −nb/2 for a positive integer n, and R1,3(α)

vanishes. In this case the hypergeometric function reduces to elementary functions. For

instance, when α = −b/2, we have

〈ψ1,2|e−bφ(σ)|ψ1,2〉 =
sin 2σ

2
(sinσ)

3
2
b2 (2.49)

agreeing with the “naive” classical limit of two-fragmented AdS2.

On the other hand, we can consider b = iβ purely imaginary, and take α to be purely

imaginary as well (or equivalently, Wick rotating the Liouville field φ). In the classical limit

β → 0 (α/b taken to be real and finite), the identity channel dominates the ψ1,3 channel,

and we have

〈ψ1,2|e2αφ(σ)|ψ1,2〉 ∼ U1,1(α)(sin 2σ)−2α/b, σ ∈
(

0,
π

2

)

,

〈ψ1,2|e2αφ(σ)|ψ1,2〉 ∼ U1,2(α)(sin 2σ)−2α/b, σ ∈
(π

2
, π
)

, (2.50)
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Figure 8. Plots of the expectation value of φ(σ) in the ZZ boundary primary |ψ1,2〉, for b real

(left) and b imaginary (right), with a generic non-integer value of |b−2|. The dashed line represents

the Liouville profile of the AdS2 vacuum, while the dotted one corresponds to the two-fragmented

AdS2. In the case of imaginary b, the profile of the Liouville field on the right AdS2 is shifted by

the constant 2π
b tan(π/b2).

i.e. the expectation value of e2αφ(σ) scales like (sin 2σ)−2α/b on both halves of the strip,

leading to two-fragmented AdS2. Plots of the analytically continued bulk-boundary three

point function for real and purely imaginary b are given in figure 7.

We see that near the mid point σ = π/2 where the two fragmented AdS2’s meet,

quantum correction is large despite that the conformal dimension of the probe operator

∆α ∼ α/b ≪ |c|. In particular, the expectation value of Vα(σ = π/2) in the state |ψ1,2〉 is

given by (using the quadratic transform of 2F1)

〈ψ1,2|e2αφ(π/2)|ψ1,2〉 = 2F1

(

α

b
, 1 + b−2 − α

b
;
3

2
+ b−2; 1

)

=

√
π Γ(3

2 + b−2)

Γ(1
2 + α

b )Γ(3
2 + b−2 − α

b )
(2.51)

→







b−2α/b
√

π

Γ( 1
2
+ α

b
)
, b→ +0,

(−b2)−α/b cos(π(α
b
−b−2))

cos(πb−2)

√
π

Γ( 1
2
+ α

b
)
, b→ i0.

For instance, for imaginary b, 〈ψ1,2|e2bφ(σ)|ψ1,2〉 is negative at σ = π/2, as in figure 7.

It is natural to consider Vα in the ∆α ∼ α/b→ 0 limit. We find for b purely imaginary,

in the b→ i0 limit,

〈ψ1,2|φ(σ)|ψ1,2〉 =
1

2

∂

∂α
〈ψ1,2|Vα(σ)|ψ1,2〉

∣

∣

∣

∣

α=0

→
{

−1
b ln | sin 2σ| + const, σ ∈ (0, π

2 ),

−1
b ln | sin 2σ| + 2π

b tan(π/b2) + const, σ ∈ (π
2 , π),

(2.52)

where the overall constant shift can be absorbed into the Liouville cosmological constant.

Curiously, the profile of the Liouville field in the two AdS2’s differ by a constant shift
2π
b tan(π/b2), coming from the derivative of U1,2(α)/U1,1(α) at α = 0, which is oscillatory
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Figure 9. Plots of the expectation value of φ(σ) in the ZZ boundary primary |ψ1,2〉, for b real

(left) and b imaginary (right), with the integer value of |b−2| = 16. The dashed line represents the

Liouville profile of the AdS2 vacuum, while the dotted one corresponds to the two-fragmentedAdS2.

as b→ 0. At the special values b = i/
√
n, for positive integer n, this shift is absent and we

have a regular semi-classical limit as n → ∞. This suggests a quantization of the central

charge in Liouville AdS2 gravity, c = 1 + 6Q2 = 13 − 6(n+ 1
n).

To summarize the results of this section, we found that:

1. For real values of b, in the b→ 0 limit, only one of the two AdS2 fragments survives

in the quantum theory, and the geometry of the ZZ boundary primary ψ1,2 is asymp-

totically AdS2 only near the (1, 1) boundary, while destroying the AdS2 boundary

condition on the (1, 2) boundary. However, the bulk operators V−nb/2 for positive

integer n still see the two-fragmented AdS2.

2. For purely imaginary values of b, the ZZ boundary primary ψ1,2 creates two-

fragmented AdS2 in the semi-classical limit, which survives in the quantum theory.

A regular semi-classical limit also suggests the quantization of the Liouville central

charge, b = i/
√
n and c = 1 + 6Q2 = 13 − 6(n + 1

n), where n is a positive integer.

Perhaps it is worth recalling here that purely imaginary b is the required choice if

one wishes to consistently couple the Liouville sector to a unitary matter CFT, in the

semi-classical limit.

2.5 Probing |ψm,n〉 with degenerate bulk primaries

In this subsection, we consider the bulk-boundary three point function involving the first

degenerate bulk primary V−b/2 and general ZZ boundary primary ψm,n with (1, 1) boundary

condition on one side of the disc and (m,n) boundary condition on the other side,

〈ψm,n(y1)ψm,n(y2)V−b/2(z, z̄)〉 = |z − z̄|1+ 3
2
b2y

−2hm,n

12 F(η) . (2.53)

The null state at level 2 in the conformal family of V−b/2 gives rise to a second order

differential equation on F(η). The two independent solutions to the differential equation

are conformal blocks corresponding to the factorization on the identity operator and ψ1,3.
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Since we have chosen the (1, 1) boundary condition at σ = 0, then the factorization through

ψ1,3 channel is absent as V−b/2 approaches the left boundary. This fixes the solution to

F(η) = (1 − η)
n+1+(m+1)b2

2 2F1(n+ 1 + (m+ 1)b2, 1 + b2; 2 + 2b2; η) (2.54)

or in terms of the expectation value of V−b/2 on the strip,

〈ψm,n|e−bφ(σ)|ψm,n〉 = (sin σ)1+
3

2
b2ei(n+1+(m+1)b2)σ

2F1(n+ 1+ (m+ 1)b2, 1+ b2; 2+ 2b2; 1− e2iσ)

→ sin(nσ)

n
(b→ 0) , (2.55)

confirming the interpretation of ψm,n as n-fragmented AdS2 in the semi-classical limit.

Although, we should note that we expect the same subtlety in the case of real b discussed

in the previous section, where generic Vα will only see one of the n AdS2’s, the other

fragments being “erased” by quantum effects. For purely imaginary b, however, we expect

the n-fragmented AdS2 to survive in the full quantum theory.

3 Interactions of fragmented AdS2

3.1 Boundary three-point functions

Let us denote by 〈m,n, k〉 the boundary three-point function 〈ψ1,mψ1,nψ1,k〉 with boundary

condition of (1, 2) type between ψ1,m and ψ1,n insertions, (1, n− 1) between ψ1,n and ψ1,k,

and (1,m− 1) between ψ1,m and ψ1,k. Note that 〈m,n, k〉 is not symmetric in n, k,m. In

the classical limit, however, we have seen that the profile of ψ1,m is not sensitive to the

boundary types, provided that the primary ψ1,m is contained in the Hilbert space of the

given boundary types. So we expect that the classical limit of 〈m,n, k〉 to be symmetric in

m,n, k. We will find that this is indeed the case, apart from an oscillating factor. Also note

that 〈m,n, k〉 is nonzero only when |m− n|+ 1 ≤ k ≤ m+ n− 3 and m+ n+ k + 1 ∈ 2Z,

due to the selection rule (2.4).

We shall consider the boundary four-point function 〈2,m, k, n〉, with boundary condi-

tion (1, 1; 1,m; 1, n − 1; 1, 2) around the boundary circle. It can factorize as

〈ψ1,2ψ1,mψ1,kψ1,n〉 → 〈ψ1,2ψ1,nψ1,n−1〉〈ψ1,n−1ψ1,2ψ1,m〉 (3.1)

or as (schematically)

〈ψ1,2ψ1,mψ1,kψ1,n〉 → 〈ψ1,2ψ1,mψ1,m−1〉〈ψ1,m−1ψ1,nψ1,k〉
+〈ψ1,2ψ1,mψ1,m+1〉〈ψ1,m+1ψ1,nψ1,k〉 . (3.2)

Writing

〈ψ1,2(y1)ψ1,m(y2)ψ1,k(y4)ψ1,n(y3)〉 = (y12y34)
P

hi





∏

1≤i<j≤4

y
−hi−hj

ij



F(η), (3.3)
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where η = y12y34/y14y32, F(η) obeys the hypergeometric equation coming from the null

state in the conformal family of ψ1,2. The general solution is

F(η) = (1 − η)(1−
n
2
)(1+ n

2b2
)η−1+ n+k

2
+ n2+k2

−2m

4b2

[

C1 2F1

(

n−m− k

2b2
, 1+

n+ k−m

2b2
;−m

b2
; η

)

+C2η
1+ m

b2 2F1

(

1 +
n+m− k

2b2
, 2 +

n+m+ k

2b2
; 2 +

m

b2
; η

)]

.

(3.4)

The limit η → 0 corresponds to the factorization through ψm±1, whereas η → 1 corresponds

to the factorization though ψn−1. Imposing that there is no factorization through ψn+1 (as

required by our choice of boundary condition), we find

〈m+ 1, 2,m〉〈m + 1, n, k〉
〈m− 1, 2,m〉〈m − 1, n, k〉 =

C1

C2
=

Γ(2 + m
b2

)Γ(k−m−n
2b2

)Γ(−1 − k+m+n
2b2

)

Γ(−m
b2

)Γ(1 + k+m−n
2b2

)Γ(m−n−k
2b2

)

=
cos((n+ k− 3m) π

2b2
) − cos((n+ k+m) π

2b2
)

cos(kπ
b2

) − cos( (m+n)π
b2

)

Γ(1+ m
b2

)Γ(2+ m
b2

)Γ(1 + n+k−m
2b2

)

Γ(1+ k+m−n
2b2

)Γ(1+ m+n−k
2b2

)Γ(2 + k+m+n
2b2

)
.

(3.5)

Choosing n = 2, k = m, we obtain 〈m+ 1, 2,m〉/〈m − 1, 2,m〉; then we can further derive

〈m+1, n, k〉/〈m−1, n, k〉. We shall not write the general formula, but focus on the classical

limit (b→ 0),

〈m+ 1, n, k〉
〈m− 1, n, k〉 ∼ (oscillating factor) × exp

[

1

b2
(m log(4m) +

1

2
(m− 1) log(m− 1)

+
1

2
(m+ 1) log(m+ 1) − 1

2
(m+ k − n) log(m+ k − n) − 1

2
(m− k + n) log(m− k + n)

+
1

2
(−m+ k + n) log(−m+ k + n) − 1

2
(m+ k + n) log(m+ k + n)) + O(1)

]

.

(3.6)

Iterating this relation, we find

〈1 + x, 1 + y, 1 + z〉
〈−1 + x,−1 + y,−1 + z〉 ∼ (oscillating factor)× exp

[

1

b2
(x log(4x) +

1

2
(x− 1) log(x− 1)

+
1

2
(x+ 1) log(x+ 1) + y log(4y) +

1

2
(y − 1) log(y − 1) +

1

2
(y + 1) log(y + 1)

+z log(4z) +
1

2
(z − 1) log(z − 1) +

1

2
(z + 1) log(z + 1)

−1

2
(x+ y − z) log(x+ y − z) − 1

2
(x− y + z) log(x− y + z)

−1

2
(−x+ y + z) log(−x+ y + z) − 1

2
(x+ y + z) log(x+ y + z)

−1

2
(x+ y + z − 2) log(x+ y + z − 2) − 1

2
(x+ y + z + 2) log(x+ y + z + 2)) + O(1)

]

.

(3.7)

This expression is particularly interesting because, as we will show in section 3.4 below, an

analytic continuation to non-integer x, y, z can be matched against the geodesic approxi-

mation of three point particles in AdS2.

– 16 –



J
H
E
P
0
7
(
2
0
0
9
)
0
0
2

Vα

ψ
1,2

ψ
1,2

ψ
1,3

Figure 10. The bulk-boundary four point function.

We can also give a closed form expression in the limit x, y, z ≫ 1, corresponding to

the scattering of AdS2’s with many fragments. In this case, we get

〈x, y, z〉 ∼ exp

[

1

b2
(x2 log x+ y2 log y + z2 log z − (x+ y − z)2

4
log(x+ y − z)

−(x−y+z)2

4
log(x− y+ z) − (−x+y+z)2

4
log(−x+ y+ z) − (x+y+z)2

4
log(x+ y+ z))

]

.

(3.8)

3.2 Bulk-boundary four-point functions

In this section we study the disc bulk-boundary four-point function

〈ψ1,2(y1)ψ1,2(y2)ψ1,3(y3)Vα(z, z̄)〉, see figure 10. The choice of boundary type is not

important for now, since we will be interested in the classical limit of this correlation

function. By conformal invariance, this four-point function takes the form

〈ψ1,2(y1)ψ1,2(y2)ψ1,3(y3)Vα(z, z̄)〉 = |z − z̄|−2∆αy
−2h1,2+h1,3

12 (y13y23)
−h1,3F(η, η̄) (3.9)

where

η =
(z − y1)y23

(z − y3)y21
, η̄ =

(z̄ − y1)y23

(z̄ − y3)y21
. (3.10)

We can use the SL(2,R) symmetry to fix for example y1 = 0, y2 = 1 and y3 = ∞. Then

η and η̄ simply coincide with the coordinates z and z̄ parameterizing the position of the

“probe” bulk primary Vα(z, z̄).

The constraining equation from the level 2 null state in the conformal family of ψ1,2(y1)

reduces to a second order differential equation on F ,

∆α(η − η̄)2F + η̄2η(η − 1)(2(1 + b2)η + 1)∂ηF + η2η̄(η̄ − 1)(2(1 + b2)η̄ + 1)∂η̄F (3.11)

+b2η2η̄2
[

(η − 1)2∂2
ηF + (η̄ − 1)2∂2

η̄F + 2|η − 1|2∂η∂η̄F
]

= 0 .

In the classical limit b→ 0 (with α
b fixed), this reduces to the first order equation

∆α(η − η̄)2Fcl + η̄2η(η − 1)(2η + 1)∂ηFcl + η2η̄(η̄ − 1)(2η̄ + 1)∂η̄Fcl = 0 . (3.12)
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Figure 11. Schematic depiction of the classical solution (3.15), corresponding to three Poincaré

discs patched together along the dashed lines.

Similarly, there is another equation coming from ψ1,2(y2), which is identical to the above

equation with F(η, η̄) replaced by F(1− η, 1− η̄). The solution to this pair of equations is

(up to a normalization constant)

Fcl(η, η̄) =
[

|η|2|1 − η|2(2η2 + 2η̄2 + 2|η|2 − 3η − 3η̄)−2
]∆α

. (3.13)

This means that if the classical limit of the three-point function 〈ψ1,2(y1)ψ1,2(y2)ψ1,3(y3)〉
is dominated by an instanton solution, the solution has Liouville profile

〈e2αφ〉inst = |z − z̄|−2α/b
[

|z|2|1 − z|2(2z2 + 2z̄2 + 2|z|2 − 3z − 3z̄)−2
]α/b

. (3.14)

The instanton solution has “physical” metric (we fix the overall normalization to agree

with the conventions of ZZ)

e2bφdzdz̄ =
36|z|2|1 − z|2dzdz̄

πb2|z − z̄|2(2z2 + 2z̄2 + 2|z|2 − 3z − 3z̄)2
. (3.15)

This is indeed a solution to Liouville equation, and corresponds to three Poincaré discs

patched together, depicted schematically in figure 11. In the upper half plane coordinate

z = x+ iy, the three disconnected AdS2’s are glued along the two curves

y =
√

3x(x− 1), x < 0 or x > 1. (3.16)

A contour plot of the classical solution (3.15) in the upper half plane coordinates, showing

the curves (3.16) is shown in figure 12. It is also interesting to visualize the solution in the

strip coordinates defined by z = eiσ+τ . The corresponding plot is shown in figure 13.

It is actually not difficult to obtain the classical instanton profile for more gen-

eral boundary three point functions. Consider for example the four point function

〈ψ1,3(y1)ψ1,3(y2)ψ1,3(y3)Vα(z, z̄)〉. Again, by conformal invariance we can write

〈ψ1,3(y1)ψ1,3(y2)ψ1,3(y3)Vα(z, z̄)〉 = |z − z̄|−2∆α(y12y13y23)
−h1,3F333(η, η̄) (3.17)

where η and η̄ are defined as above. The constraining equation from the null state in the

conformal family of ψ1,3(y1), see eq. (2.19), reduces in the classical limit to the first order

– 18 –
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Figure 12. Contour plot of the solution (3.15) in the upper half plane coordinates. The points

x = 0 and x = 1 on the real axis correspond to the insertions of the two ψ1,2 operators. The

“fragmentation lines” are described by eq. (3.16).

differential equation

2∆α(η− η̄)2(|η|2 −η− η̄)Fcl
333 +ηη̄3(η2 −1)(2η−1)∂ηFcl

333 + η̄η3(η̄2 −1)(2η̄−1)∂η̄Fcl
333 = 0 ,

(3.18)

and as before there is a similar equation coming from ψ1,3(y2). The solution to this couple

of first order differential equations (up to an overall constant) turns out to be

Fcl
333(η, η̄) =

[ |η|2|1 − η|2
(η3 + η̄3 − 2(η2 + η̄2)(|η|2 + 1) + |η|2(5η + 5η̄ − 2|η|2 − 2))2

]∆α

, (3.19)

and the physical instanton metric (∆α = 1) corresponding to the three point function

〈ψ1,3ψ1,3ψ1,3〉 is therefore

e2bφdzdz̄=
36|z|2|1 − z|2dzdz̄

πb2|z−z̄|2 (z3+z̄3−2(z2+z̄2)(|z|2+1)+|z|2(5z+5z̄−2|z|2−2))2
. (3.20)

One can verify that this is a solution to Liouville equation, and as expected corresponds

to four copies of the Poincaré disc patched together.

3.3 Instantons interpolating fragmented AdS2’s

It is instructive to write the above solutions in the general form

e2bφ =
1

πb2
∂A(z)∂̄B(z̄)

(1 −A(z)B(z̄))2
, (3.21)

which is in fact the most general solution of Liouville equation

∂∂̄φ− πbe2bφ = 0 . (3.22)
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Figure 13. Strip coordinates plot of the classical Liouville profile corresponding to the boundary

three point function < ψ1,2ψ1,2ψ1,3 >. The strip τ ∈ R, 0 ≤ σ ≤ π fragments into three

disconnected pieces.

For example, the regular AdS2 solution corresponds to B(z̄) = 1/A(z̄) and A(z) = z,

while the n-fragmented solution has A(z) = zn. In fact, this is perhaps the fastest way to

see that the stress tensor for the n-fragmented AdS2 agrees with the conformal dimension

of the operator ψ1,n (one simply looks at the Schwartzian derivative of the conformal

transformation w = zn).

Going back to the “instanton” solutions (3.15), (3.20) found above, one can see

that they take indeed the form (3.21) (still with B(z̄) = 1/A(z̄), which ensures that

the metric is real). By direct calculation one finds that ∂A(z) = z(z − 1) for the

〈ψ1,2ψ1,2ψ1,3〉 and ∂A(z) = z2(z−1)2

(z− 1
2
)2

for the 〈ψ1,3ψ1,3ψ1,3〉 case. Motivated by this, we

conjecture that the general instanton solution corresponding to the three point function

〈ψ1,n(0)ψ1,m(1)ψ1,k(∞)〉 is given by2

∂A(z) =
zn−1(z − 1)m−1

P (z)2
, (3.23)

where P (z) is a (n+m− k− 1)/2-degree polynomial with distinct roots (to be determined

below), namely P (z) =
∏(n+m−k−1)/2

i=1 (z− zi). Note that (n+m− k− 1)/2 is an integer as

implied by the three point function selection rules. The conjecture is motivated as follows.

First, the degree of the zeroes at z = 0 and z = 1 and of the pole at z = ∞ are fixed by

demanding that near those points the metric looks respectively like the n-fragmented, the

m-fragmented and the k-fragemented AdS2. Furthermore, the fact that P (z) has distinct

roots and the denominator of (3.23) is P (z)2 follows by requiring that near each of the zi
the metric looks like the regular AdS2. To see this, consider for simplicity ∂A(z) ∼ 1

(z−z0)s

near z = z0. Then writing z = z0 + reiθ, the metric close to z0 takes the form

ds2 ∼ (dr/r)2 + dθ2

sin2((s − 1)θ)
,

2The metric (3.21) with B = 1/Ā is invariant under the SL(2, R) transformation A→ (aA+ b)/(cA+d),

∂A→ ∂A/(cA + d)2. One can reach the standard form (3.23) by applying such SL(2, R) transformation.
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so that we have to choose s = 2 as claimed. Finally, whe have to specify the position of

the roots zi of P (z). If we insist that A(z) has to be a rational function, which seems to

be a natural assumption, then the roots can be determined by requiring that the poles at

z = zi have vanishing residue, namely

d

dz

[

(z − zi)
2∂A(z)

]

|z=zi
= 0 i = 1, · · · , n+m− k − 1

2
. (3.24)

It is easy to verify that the above solutions for 〈ψ1,2ψ1,2ψ1,3〉 and 〈ψ1,3ψ1,3ψ1,3〉 satisfy the

conjecture (3.23). By directly solving for the classical limit of the bulk-boundary four point

function as described above, we have also successfully checked the conjecture on a few other

explicit examples such as 〈ψ1,2ψ1,3ψ1,4〉 and 〈ψ1,3ψ1,3ψ1,5〉, which respectively have ∂A(z) =

z(z − 1)2 and ∂A(z) = z2(z − 1)2. Other tests of (3.23), (3.24) come from these known

examples by applying an inversion z → 1/z to map the origin to infinity. For example, one

finds that the solution for 〈ψ1,3(0)ψ1,2(1)ψ1,2(∞)〉 has ∂A(z) = z2(z−1)
(z−2/3)2

in agreement with

the conjecture. A further check comes from 〈ψ1,5(0)ψ1,3(1)ψ1,3(∞)〉, which turns out to be

given by ∂A(z) = z4(z−1)2

(z−z1)2(z−z̄1)2
with z1 = 1

20(15 + i
√

15), as predicted by (3.23), (3.24).

3.4 Comparison with the geodesic approximation

Consider the classical limit b → 0 of the boundary three point function, for example

eq. (2.45). In this limit one gets

〈ψ1,2ψ1,2ψ1,3〉 ∼ ±2
√

2

3
3
4

(

− cos
π

b2

)
1
2
e−

1
2b2

ln 27
16 , real b→ 0,

〈ψ1,2ψ1,2ψ1,3〉 ∼ ±
√

2

3
3
4

(

−
1 + 2 cos 2π

b2

cos π
b2

) 1
2

e−
1

2b2
ln 27

16 , imaginary b→ 0. (3.25)

The exponential term suggests that it should be possible to obtain this result by a semi-

classical gravity calculation.3 Namely one should evaluate the regularized action on the

“instanton” solution, i.e. the classical Liouville profile (3.15), corresponding to the inser-

tion of the three boundary primary operators, which was obtained in section 3.2. In this

section we present a different calculation based on point particles moving along geodesics

in AdS2, which interestingly matches a particular analytic continuation of the boundary

three point function discussed in section 3.1.

Consider three point particles of masses m1,m2,m3 starting off at the boundary of the

disk and moving along geodesics until they meet at one point in the interior. The geodesic

approximation is expected to be valid when the mass of the particles are large compared

to the AdS scale, and the gravity coupling is weak, i.e. in the limit 1 ≪ mi ≪ 1/b2 (in AdS

units). Mapping the problem to the upper half plane, we can place the particles with masses

m1 and m2 on the real line (separated say by a distance L), and the particle with mass

m3 at i∞. The particles m1 and m2 move along circles and m3 along a straight line, until

the geodesics meet at a certain height h, as shown in figure 14. Using as variables the final

3Curiously, for a special set of “quantized” values of b, namely b−2 = n being an odd integer, the

oscillatory factor on the r.h.s. of (3.25) is a constant independent n.
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Figure 14. Three point particles of masses m1,m2,m3 moving along geodesics in the Poincarè

half plane.

angular position θ1 and θ2 of the circular geodesics, the total action for the system reads

S = m1

∫ θ1

ǫ
R1

dθ

sin θ
+m2

∫ θ2

ǫ
R2

dθ

sin θ
+m3 ln

Λ

h
, (3.26)

where we have introduced cutoffs ǫ→ 0 and Λ → ∞. The geometry implies

h(θ1, θ2) =
L

tan θ1
2 + tan θ2

2

R1,2 =
h

sin θ1,2
. (3.27)

Then one gets

S = (m1 +m2 −m3) ln h−m1 ln cos2
θ1
2

−m2 ln cos2 θ2
2

−(m1 +m2) ln ǫ+m3 lnΛ . (3.28)

It is not difficult to extremize this action with respect to θ1 and θ2 for general m1,m2,m3.

The solution turns out to be

tan2 θ1
2

=
m2

2 − (m1 −m3)
2

(m1 +m3)2 −m2
2

, tan2 θ2
2

=
m2

1 − (m2 −m3)
2

(m2 +m3)2 −m2
1

. (3.29)

Plugging back into (3.28) and removing the divergencies, one finds the following general

formula for the regularized action

Sreg =
1

b2

[

3
∑

i=1

mi log(2mi) −
1

2
(m1 +m2 −m3) log(m1 +m2 −m3)

−1

2
(m1−m2+m3) log(m1−m2+m3)−

1

2
(−m1+m2+m3) log(−m1 +m2 +m3)

−1

2
(m1 +m2 +m3) log(m1 +m2 +m3)

]

. (3.30)

This expression matches the classical limit of the boundary three point function (3.7) if we

take the masses to be m1 = −x/b2,m2 = −y/b2,m3 = −z/b2, with small real x, y, z. Note

that the conformal dimension corresponding to a scalar of mass m is h = 1
2 + 1

2

√
1 +m2

(where m is expressed in units of the AdS radius) [2]. In our limit h ∼ m
2 , consistently

with the dimension ∆1,1+x ∼ − x
2b2

of the “analytically continued” operator ψ1,1+x.
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